Name:

Math 10a Quiz 7

October 23, 2013

1. (2 points) Does the following series converge or diverge? Justify your answer.

$$
\sum_{m=1}^{\infty}\left(\frac{5 m^{2}-10}{2 m^{2}+m}\right)^{m}
$$

Root test:

$$
\lim _{m \rightarrow \infty} \sqrt[m]{\left(\frac{5 m^{2}-10}{2 m^{2}+m}\right)^{m}}=\lim _{m \rightarrow \infty} \frac{5 m^{2}-10}{2 m^{2}+m}=\frac{5}{2}
$$

Since this is bigger than 1 , the series diverges.
2. (4 points) Let f be a function that $f(0)=0$ and $f^{(k)}(0)=3^{k}(k-1)$! for each $k \geq 1$. What is the largest open interval centered at 0 on which the Taylor series for f centered at 0 converges? Justify your answer.

The Taylor series centered at 0 is

$$
\sum_{k=0}^{\infty} f^{(k)} \frac{x^{k}}{k!}=0+\sum_{k=1}^{\infty} 3^{k}(k-1)!\frac{x^{k}}{k!}=\sum_{k=1}^{\infty} \frac{3^{k}}{k} x^{k}
$$

Since

$$
\lim _{k \rightarrow \infty}\left|\frac{\frac{3^{k+1} x^{k+1}}{k+1}}{\frac{3^{k} x^{k}}{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{3 x k}{k+1}\right|=3|x|
$$

the ratio test says that the series converges for $3|x|<1$, i.e. for $|x|<\frac{1}{3}$. This is the interval $(-1 / 3,1 / 3)$. This is the largest open interval on which it converges because the ratio test says that it diverges for $|x|>\frac{1}{3}$.
3. For this problem, consider the power series $1+x+x^{2}+\cdots=\sum_{k=0}^{\infty} x^{k}$.
(a) (1 point) For what values of x does the power series converge? (you do not need to justify your answer)
$-1<x<1$. This is the geometric series.
(b) (1 point) When the series does converge, what value does it converge to? Write your answer as a rational function of x.

$$
\frac{1}{1-x} .
$$

This is a formula you learned in lecture.
(c) (2 points) Write down a power series that converges to

$$
\frac{1}{(1-x)^{2}}
$$

for $|x|<1$.
From the previous problem we have

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

for $|x|<1$, so deriving both sides we get

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots=\sum_{k=0}^{\infty}(k+1) x^{k} .
$$

